
30 April 2001

By Al Williams, WD5GNR

ams often speak in strange
lingo. As a ham you should be
able to easily decipher the

following:
TU OM ES GL 73 DE WD5GNR.
But what about the next group?
BSF PORTA,3
MOVF SBYTE,W
ADDWF PCL,F
Unless you know about PIC

microprocessors,  those three l ines
probably seem like gibberish. Because an
increasing number of ham radio projects
depend on microprocessors, don’t be
surprised if you can decipher this new
“code” sometime in the not-too-distant
future.

Microprocessors (or microcontrollers)
offer unparalleled flexibility and can
replace dozens or even hundreds of other
components in modern radio systems.
Microprocessors no longer require
expensive, special-purpose programming
hardware, so more designers are using
them instead of ordinary logic ICs.

Most microcontrollers have limited
memory capacities, however, so designers
often use assembly language—like the
snippet above—to control the
microprocessor and conserve precious
memory space. Although that approach
leads to efficient programs, many people
find assembly language difficult to learn
and tricky to work with—especially the
bare-bones assembly languages that
usually accompany microcontrollers.

If you want to design and build modern
projects, you may not have to learn
assembly language. The fastest possible
route from idea to finished product is via
a line of small controllers that use a
simple-to-learn Basic-like language

Bridge the Digital Divide—
Basically
If you think working with microprocessor-based circuits is frustrating
and complicated, you haven’t been introduced to the Basic Stamp—a
powerful, yet friendly, digital building block that puts scores of smart
circuits at your fingertips. Here’s how to get started.

called PBasic. Although PBasic is easy
to learn and use,  i t  has powerful
commands tailored to the types of tasks
hams and computer experimenters want
microcontrollers to perform. On top of
that, these microcontrollers—called Basic
Stamps—require practically no external
components.

The Hardware
There are several types of Basic Stamp

processors, all made by Parallax.1 More
expensive Stamps have more memory and
are faster than the less expensive chips.
The two most common Stamps are the
BS1 and the BS2. The BS1 has eight I/O
pins and stores 256 bytes of instructions.
Although 256 bytes of program storage
(and 14 bytes for variables) sounds like a
miniscule amount in these days of
megabytes and gigabytes, for a small
controller, it’s often more than you’ll
need. The BS2 has 16 I/O pins and also
stores 2048 bytes of instructions (along
with 32 bytes of data).

You can buy the BS1 on a small PC
board or as a 14-pin SIP. The BS2 looks
like a standard 24-pin IC, but it’s really a
tiny PC board with IC pins. In addition
to the BS2, you can also get the BS2SX,
BS2E or BS2P which have more memory
and features but are more expensive.
These processors are also faster than the
BS2, but consumes more power. For most
projects, the BS2 is a good trade-off
between cost, speed and power. In this
article I’ll focus on the BS2 exclusively.
If you learn to use it, you’ll have no
problems with the other chips.

One of the best features of the Basic

Stamp is how easy it is to connect the
hardware. The BS2 has its own regulator
and clock circuits. You can simply
connect a 9-V battery (the voltage can
range from 6 to 15 V) and the Basic
Stamp is ready to go. It’s that simple. Of
course, you also need to connect whatever
circuitry you want to monitor or control,
but the microprocessor itself merely
needs a power supply. If your project
already has a dc supply, you can probably
use that instead.

The BS2 is quite different from
traditional microprocessors that need
regulated power supplies (perhaps even
multi-voltage supplies) and external clock
circuits.

Programming
The Stamp, super chip that it is, won’t

do a thing without programming. The BS2
connects to a PC using the PC’s serial
port, but because the BS2 doesn’t have a
standard RS-232 port, you may need to
devise a way to connect a serial cable to
your project. Typical BS2 projects have

H

1Notes appear on page 34.

Figure 1— One handy use for the Stamp’s
built-in port is to print informational
messages for debugging purposes right
back to the Stamp program. You can do this
with the DEBUG statement, as shown here.



April 2001 31

RS-232 ports anyway, so that’s not always
a problem. The port requires only four
pins, so if you only need to program the
device you can put a simple four-pin
connector on the board and wire a custom
cable.

You can also buy a carrier board from
the manufacturer. This is simply a PC
board with some uncommitted holes and
a serial port connector. If you want to
work on a solderless breadboard (highly
recommended for getting started) you can
create a custom cable, use a prototyping
adapter,2 or buy the Stamp in a special
form that can plug into a breadboard.3

In addition to the cable you’ll need
special software, which you can freely
download from the Internet. You can also
get the entire manual for the chip at the
same Web site in Adobe PDF format at
no charge.4

The programming software is shown
in Figure 2. You simply enter your
program and press Control+R (or the
Run|Run menu) to download the program
and execute it. Once you program the
Stamp, i t  will  remain programmed
indefinitely—even if the power cycles.
The PC connection is only required to
program the chip.

The Stamp editor works like most
Windows-based editors. If you create a
new file, however, it appears as a tab near
the top of the editor. This allows you to
switch between multiple files even though
only one can reside in the Stamp at one
time. (To begin with, work with one file
at a time.)

Your First Program
Once you have a programming cable

and a 9-V battery (or other suitable power
supply), you’re almost ready to go. The
only remaining task is to connect an
external device to measure or control.
Figure 3 shows a simple test circuit that
consists of an LED and a switch. The pull-
up resistor (R2) makes sure that P1 is high
unless you press the switch (S1). The
Stamp can read the state of P1 and change

Figure 2—Using Parallax software to create
a program to call CQ. The complete program
listing is shown elsewhere in this article.

Figure 3—You can use this simple circuit to start experimenting with the Stamp.
B1—9-V battery
U1—BS2-IC (Basic Stamp)
D1—Red LED

R1—470 ΩΩΩΩΩ, 1/4-W resistor
R2—10 kΩΩΩΩΩ, 1/4-W resistor
S1—SPST pushbutton switch

the state of P0 to turn the LED on or off.
Each of the 16 I/O pins on the Stamp

can be used as an input or an output. By
default, the pins start as inputs, but you
can change them to outputs at any time.
You can even have pins that are
sometimes inputs, sometimes outputs,
depending on your program.

One potentially confusing Stamp
convention is that the I/O pin numbers
don’t correspond to the IC pin numbers.
For example, P0, the first I/O pin, is
actually IC pin 5; P1 is pin 6, etc. It’s
easy to get confused.

Here’s a simple BS2 program that will
blink the LED connected to P0:

again:
   toggle 0
   goto again
If you’ve ever written a Basic program

you can probably figure this out. Consider
the program line by line:

again: This is a label. You can use
almost any word you like, but it must
begin with a letter and can’t contain
spaces. The label ends with a colon. Think
of a label as a bookmark that holds a place
in your program. Later, you can return to
the bookmark to start the program at the
labeled step.

toggle 0 This command forces pin 0

to be an output. If the output is a logical
0 (the default), the command toggles it
to a logical 1 (about 5 V). If the output is
already a logical 1, the command toggles
it to a logical 0.

goto again This command simply
executes the program back at the again:
label.

This simple program makes the LED
blink so fast that it looks like it’s on all
the time (unless you watch the output pin
with an oscilloscope). Let’s slow things
down with the pause command:

again:
   toggle 0
   pause 500
   goto again
The pause command makes the

program stop for the specified number of
milliseconds. With a value of 500, the
program will blink the LED at about
1 Hz (a half-second on and a half-second
off).

The toggle command is a good
example of the special commands that the
Stamp uses to control external devices.
You can find a complete list of Stamp
commands in Table 1. Simple Basic
constructs such as for and if are present,
along with a host of I/O-related
commands such as pwm, freqout, pulsin



32 April 2001

Table 1
Basic Stamp II Commands
Command Description Notes
Branch Jump to a label based on an index
Button Monitors a button Provides debounce and auto repeat functions
Count Counts pulses
Data Stores data in EEPROM Stores at compile time
Debug Write to the debug terminal Usually uses your PC
Dtmfout Generate DTMF tones
End Halt program execution
For/Next Basic-language loop
Freqout Generate one or two tones
Gosub/Return Subroutine call
Goto Unconditional jump
High Sets I/O pin to logic 1 Implies output
If/Then Basic-language control flow Conditional goto only
Input Changes I/O pin to input
Lookdown Searches a table for a match
Lookup Finds an entry in a table
Low Sets I/O pin to logic 0 Implies output
Nap Pause in low power mode
Output Changes I/O pin to output
Pause Pause program execution 1 mS resolution
Pulsin Measures a pulse 2 µS resolution
Pulsout Generates a pulse 2 µS resolution
Pwm Pulse width modulation Use to control motor speeds or generate analog voltages
Random Generate a random number
Rctime Measures RC network charge Use to read a potentiometer or any resistive or capacitive sensor
Read Reads data from EEPROM
Reverse Changes I/O pin to opposite state
Serin Read RS-232 data 243 baud to 50 K baud
Serout Send RS-232 data 243 baud to 50 K baud
Shiftin Synchronous serial input Use with SPI EEPROMs, A/Ds, etc
Shiftout Synchronous serial output Use with SPI EEPROMs, A/Ds, etc
Sleep Pause in low power mode
Toggle Reverses logic level of I/O pin Implies output
Write Writes data to EEPROM Stores at run time
Xout Generates X-10 commands Requires external hardware

Listing 1. Sending CQ
‘ CQ by WD5GNR

LED con 0
speed con 200   ‘ base speed

waiting:
 wait for switch
  if in1=1 then waiting
  gosub dash
  gosub dot
  gosub dash
  gosub dot
  pause speed
  gosub dash
  gosub dash
  gosub dot
  gosub dash
  goto waiting

dot:
   high LED
   pause speed
   low LED
   pause speed
   return

dash:
   high LED
   pause speed*3
   low LED
   pause speed
   return

and so forth.
Commands such as toggle require a

pin number. You can also access pins as
variables. For example, to read the switch
as a binary digit, you can refer to in1. You
can also directly set the LED’s state using
out0. Here’s a simple program that turns
on the blinking LED when you push the
button:

waitbtn:
   if in1=1 then waitbtn
again:
   toggle 0
   pause 500
   goto again
Notice that the if statement can only

jump to a label (such as waitbtn). You
can’t use the goto keyword, and you can’t
execute any statements. You can only
jump to a label.

Of course, there is more than one way
to accomplish any programming task.
Here’s another way to blink the LED:

again:
   high 0
   pause 500
   low 0
   pause 500
   goto again
Here, the high and low commands set

the exact state of the output pin instead
of switching it to the opposite state.

Subroutines are fundamental to re-
using Basic code, and the Stamp supports
the gosub command as any Basic should.
A gosub command transfers control to a
label much like a goto. Unlike a goto,
however, a return statement will go back
to the line following the gosub. For
example:

again:
   gosub blink
   goto again
blink:
   toggle 0
   pause 500
   return
Not only is this easier to read, but it

also saves space when you need to blink
the LED from more than one place in your
program. Even with this simple slate of
commands, you can write some ham radio
software right away. Listing 1 shows a
very simple program that blinks CQ on
the LED after you press the button. This
isn’t the most efficient way to write the
program, but it works.

Notice that the program in Listing 1
uses several statements (near the top) that
use the con keyword. This defines a



April 2001 33

constant. By using a constant in the pause
statements, you can change the Morse
code speed by changing one number.
Without the constant you’d have to
change every pause statement separately.
Lines that start with an apostrophe are
comments and don’t affect the execution
of the program.

Learning More

‘ wait for button up
goto top

Generating TouchTones in software
usually requires sophisticated wave
synthesis techniques to generate the two
simultaneous sine waves. But when using
PBasic, you don’t care. You simply use
the DTMFOUT command and the Stamp
does the rest!

Other sophisticated commands can
handle serial I/O, pulse-width modula-
tion, resistance or capacitance measure-
ments and pulse counting. Of course, the
Stamp also handles sophisticated integer
math, something that’s usually trou-
blesome with ordinary microcontrollers.

Variables
If you’re going to use math, you’ll

probably want to use variables. The
Stamp provides several registers (work-
ing memory areas for data) that you can
address by name. It’s usually better,
however, to ask the Stamp to assign
registers to variables that have mean-
ingful names. For example:

adin var byte
counter var word
This defines two variables. One is a

byte (eight bits) and the other is a word
(16 bits). The byte’s name is adin and the
word is named counter. Variables can
also be of type bit (a single bit) or nib
(four bits) .  The PBasic program
automatically assigns registers to these
variables (until you run out of registers
and get an error).

You can also use the same syntax to
provide an alias for another variable. This
is useful if you want to reuse a single
register in two non-conflicting places. For
example:

tmpvar var adin
‘ can’t use tmpvar and adin together
You can also give names to constants.

For example:
pi100 con 314
limit con 100

Math
The Stamp can do full-featured, 16-bit

integer math. That includes multi-
plication and division, which are usually
unpleasant to do on a microcontroller.
What Stamps can’t do is handle floating-
point numbers. Therefore, 10/3 (10
divided by 3) results in an answer of 3,
which can cause problems.

Another subtle point is that the Stamp
evaluates math expressions from left to
right, which is not how you normally
work an equation. For example, consider
this statement:

X=3+5*2
In high school math you learned that

the correct answer is 13 (you do the

multiplication before the addition). The
Stamp, however, goes strictly left to
right, so it computes the answer as 16
(addition first). Luckily, PBasic (for the
Stamp II) supports parenthesis, so you
could write:

X=3+(5*2)
This will produce the answer you

expect without having to rearrange the
equation.

There are several tricks to eliminating
floating-point math. Sometimes you
simply need to rearrange your equation.
Suppose you read a value from an analog-
to-digital converter (ADC). The byte is
in a variable (adin). In addition, you have
a constant defining the reference voltage
input to the ADC (nominally 5 V).
Because the ADC returns a number
between 0 and 255 (a span of 256), each
count is equivalent to about 19.5 mV (5/
256) if the reference voltage is 5 V.
Consider this code:

adin var byte
value var word
ref con 5
value = ref/256*adin
This won’t work because ref/256 is 0,

so value will always be 0. You must
rewrite the equation so the multiplication
occurs first:

value = adin*ref/256
Even then, adin must rise above 52

before value can reach 1, which wastes a
lot of resolution. What if you measured
decivolts instead of volts (that is, use 0.1 V
units)? Now, the reference value is 50 (5 V
is 50 decivolts). So now, value will change
for every five or six increases in adin.

You can’t carry this reasoning too far,
though. Suppose you decide to go to one
more decimal point (centivolts, or 0.01 V
increments). Of course, the ADC can
produce only about half of that resolution.
For the sake of argument, however, don’t
worry about that yet.

Expressing the reference value in
centivolts results in a ref constant of 500.
The problem is, when you multiply adin
by ref, the maximum result is 255*500
or 127500. The largest 16-bit number is
65535. The Stamp will quietly overflow
and produce an incorrect result.

Serial Capabilities
The Stamp has a special built-in half-

duplex serial port (this is the port you use
to program it). Your program can also use
this serial port, or you can use any pin as
a TTL-level serial input or output. One
handy use for the built-in port is to print
informational messages for debugging
purposes right back to the Stamp program.
You can do this with the DEBUG
statement. For example:

i var word

One of the strengths of
the Stamp is that many
of its PBasic commands

replace dozens
—or even hundreds—
of lines of assembly

language.

There is a wealth of information on the
Web about the Basic Stamp. The Parallax
Web site is a good place to start. You
might also enjoy my Basic Stamp FAQ.5

If you like to read paper instead of
computer screens, you’ll enjoy my Basic
Stamp book.6

With the Basic Stamp you can build
computer controls into your ham radio
projects with very little investment. Yes,
the Stamp is more expensive than a
barebones microprocessor, but the price
is more reasonable after you deduct the
cost of the extra components,  the
development tools, the complexity and
the time spent writing and debugging
assembly language.

One of the strengths of the Stamp is
that many of its PBasic commands
replace dozens—or even hundreds—of
lines of assembly language. That means
you can write programs in minutes that
would take hours or days using traditional
methods. A great example of this is the
Stamp’s DTMFOUT command. You can
use this to easily generate TouchTones on
any output pin. You can connect a piezo
speaker (or filter the output and feed it to
a transmitter). Suppose you have such a
speaker connected to pin 0 of the Stamp.
Here’s the entire program required to dial
a telephone number:

DTMFOUT 0,[1,8,0,0,5,5,5,1,2,1,2]
That’s it! How do you trigger it?

Simply turn the Stamp on. Push a button
to make the Stamp dial and hold it down
until it’s done. If you really wanted to
wait for a button (and leave the Stamp on
all the time), you could change the
program a little:

top:
‘ switch 0 when on

if in1=1 then top
dtmfout 0,[1,8,0,0,5,5,5,1,2,1,2]

done:
if in1=0 then done



34 April 2001

for i = 1 to 100
debug ?i
next
This produces the output in Figure 1.

For more general-purpose serial
communications you can use the Serin
and Serout commands. You can specify
any of the 16 general-purpose I/O pins (0-
15) or you can use the special pin number
16 to specify the built-in port. You can
also control the baud rate and certain
other parameters.

Because of the Stamp’s robust inputs,
you can actually connect a serial output
through a 22-ký series resistor directly to
an I/O pin. This works even though the
pin may have to absorb ±12 V (just don’t
forget the resistor or you may damage the
Stamp). You can usually drive an RS-232
receiver directly from a Stamp pin,
although using 0 and 5 V for RS-232
signaling isn’t standard.

Of course, you can also use an RS-232
driver (like the Maxim MAX232 chip7) to
generate (and accept)  true RS-232
signaling levels. The Stamp can support
either mode of operation. The built-in port
contains a level converter that “steals”
–12 V from the transmitter (which limits
it to half-duplex operation). You can find
more details in the Stamp manuals.

Don’t forget that the Stamp does one
thing at a time. Therefore, if you’re
waiting for serial data, you can’t do
anything else until the data arrives, or
your timeout expires. Similarly, if data
arrives while you’re not listening, it’s
simply lost. That means accommodating
serial data requires careful planning and
some form of handshaking (which the
Stamp supports).

Pulse-Width Modulation
Another intriguing Stamp capability is

pulse-width modulation. The PWM
command allows you to generate a pulse
stream with a specific duty cycle. For
example, if you set the PWM command
to 128, the output pulses will be high as
much as they are low (50% duty cycle).
Changing the value to 64 will make the
output low more often than high (25%
duty cycle).

You can use this pulse stream to
control the brightness of an LED (or
lamp) or even the speed of a motor.
Although the Stamp has enough muscle
to drive an LED, you’ll need some extra
circuitry to drive a motor. One of the most
useful things you can do with pulse-width
modulation is to use a simple RC network
to integrate the pulses into a voltage. This
allows you to create an analog voltage on
an output pin with very little external
circuitry. The voltage across an external
capacitor will be proportional to the

PWM duty cycle. So, if the duty cycle is
128, the voltage will be about 2.5 V.

The only problem with the Stamp’s
PWM system is that the Stamp does not
multitask. Therefore, when you use PWM
to charge a capacitor to a certain voltage,
you have to eventually stop and do
something else. The Stamp automatically
switches the I/O pin to an input state,
which has a high resistance. Unfortun-
ately, the rest of your circuit may present
enough of a load to rapidly discharge the
capacitor.

This isn’t always a problem. For
example, suppose you create a capaci-
tance meter (see below). You decide to
make the output a voltage you can read
with your digital voltmeter. Your meter’s
input resistance is probably 10 mý or
more, so as long as you make the Stamp
execute the PWM command regularly
(maybe once a second or so), you won’t
see any significant error in the output.

On the other hand, suppose the voltage
is driving a light bulb, which will quickly
discharge the capacitor. In this case it’s
best to buffer the PWM output with an
op amp.

Resistance and Capacitance
My high school math teacher always

said, “You have to use what you know to
discover what you don’t.” Computers
aren’t  good at  measuring analog
quantit ies such as resistance and
capacitance. On the other hand, they are
very good at measuring time. You can use
the Stamp to measure the time it takes for
an RC network to charge or discharge,
and that time relates to the value of a
resistor and a capacitor in the network.

If you use a fixed capacitor you can
measure the resistance (perhaps a
potentiometer or a thermistor). If you
provide a fixed resistor, the time will be
proportional to a changing capacitance.
The command that measures time is
Rctime. You can charge or discharge the
network (using the High  or Low
commands) and invoke Rctime  to
determine how long it takes the capac-
itor’s voltage to reach the opposite state.

Pulse Measurements
The Stamp can also measure pulses

using Pulsin, which returns the width of
a positive- or negative-going pulse. You
can also count the number of pulses over
a given period using the Count command.
These commands are excellent for
measuring relatively low frequencies.

If you want to generate pulses you can
use the Pulsout command. Don’t forget,
however, while you’re measuring or
generating pulses,  nothing else is
happening. So you can’t constantly

monitor pulses—you’ll eventually have to
stop to do additional processing.

Brave New World
What will you do with a Basic Stamp?

Here are some ham radio ideas:
• A remote control for an RS-232

transceiver (use Rctime  to read
potentiometers and Pulsin to monitor
an optical encoder).

• A simplex repeater (use a digital speech
recorder).

• A control system for an auto-tuner.
• A smart rotator controller.

Basic Stamps aren’t useful in every
application. But for the many tasks they
will handle, you can’t find anything easier
to program. The expense of the chip is
minor compared to the expense of buying
special hardware and software to program
other microcontrollers—not to mention
the expense of hours of frustrating
programming in assembly language!

There’s plenty more to learn about
Basic Stamps, but luckily, there are plenty
of online resources and books to help.8

There is also an active e-mail reflector
that supports the Stamp.9 Be sure to check
out my Basic Stamp FAQ10 and my book
on the Stamp,11 which has many projects
and some tips on how to move from the
Stamp to the PIC, a more traditional
microcontroller.

If you’ve been putting off learning
about microcontrollers, the Stamp is the
perfect way to get your feet wet. Just be
warned: Once you’ve done one project,
you’ll think of at least a hundred you’ll
never have time to start!
Notes:
1Parallax Inc, 599 Menlo Dr, Suite 100,

Rocklin, CA 95765; www.parallaxinc.com.
2See www.al-williams.com/awce/asp2.htm

for more about the solderless breadboard
adapters.

3The OEM Stamp can plug into a breadboard.
See www.parallaxinc.com/html_files/
products/oem_stamp_brief.asp.

4w w w . p a r a l l a x i n c . c o m / h t m l _ f i l e s /
downloads/download.htm has the soft-
ware and documentation. You can also
download free course material from www
.stampsinclass.com. Although the course
material is meant for classroom use, you can
easily use them for self-study.

5The Basic Stamp FAQ is at www.al-
williams.com/wd5gnr/stampfaq.htm.

6Microcontroller Projects with Basic Stamps,
published by CMP Books, is available from
the ARRL.

7 Maxim’s Web site is www.maxim-ic.com.
8 See footnote 4.
9 Log into groups.yahoo.com and sign up for

the basicstamps group.
10 See footnote 5.
11 See footnote 6.

You can contact the author at 310 Ivy
Glen, League City, TX 77573; alw@al-
williams.com.


