Arguing for Caution – Redacted Version

New Information Arguing for Caution on HF BPL

- Strong fields follow the power line for 0.5 mile. Not a point source.
- Emerging ARINC / PHONEX carrier-current case [for internal FCC discussion only]
 - ARINC interference now traced to carrier current devices.
 Interference distance at least 5 miles
 - ARINC and most FCC DF stations are affected
 - Emissions are believed to exceed limits, but compliant BPL may be worse, because...

	Phonex Carrier Current	Access BPL Overhead power lines → 800 m extent		
Radiator	House wiring \rightarrow 20-30 m extent			
# of com channels overlapped	2	~1500		

ORIGINAL UNREDACTED

Access BPL Conclusions

Conclusions Regarding Access BPL

- The tested overhead PLC devices do <u>not</u> act as point sources
 - Emission from line shows virtually no decay 230 m from coupler
- Differential two-wire signal injection affects the polarization of radiated emissions from overhead devices

NTIA Results – Redacted Version

NON-PUBLIC / FOR INTERNAL USE ONLY				
CC Laboratory	NTIA Results			
	and an analysis of the second s			

NTIA Results

- NTIA predictions are consistent w/FCC measurements
 - In ITU Residential noise, BPL increases noise floor for land mobile <15 meters horizontal distance from power line by
 - 30 dB at mid/upper HF
 - 10 dB above 30 MHz

ORIGINAL UNREDACTED

% of Points Exceeding Specified Interference Level for Land-mobile Receiver Along 340-meter BPL Power Line (NTIA Report Vol I, Table 6-3)

Frequency (MHz)	3 dB (I+N)/N	10 dB (I+N)/N	20 dB (I+N)/N	30 dB (I+N)/N	40 dB (I+N)/N	50 dB (I+N)/N
4	99.3%	93.2%	54.7%	6.2%	0.0%	0.0%
15	99.8%	99.7%	95.7%	59.5%	4.3%	0.0%
25	99.8%	99.0%	92.1%	58.5%	18.5%	0.0%
40	87.9%	49.2%	10.0%	0.0%	0.0%	0.0%

 NTIA measurements: ambient noise levels < ITU <u>Residential</u> Hence, BPL increases noise by more than predicted above

"The occasional sampling of environmental noise power levels ... with the BPL system turned off were lower than the levels predicted by ITU-R Recommendation P.372-8. Thus, ... use of the higher noise power levels predicted by ITU-R Recommendation P.372-8 in our analyses may bias results toward underestimation of interference levels."

NTIA would have argued to protect it's HF mobile assets, but...

HF Options – Redacted Version

HF Issues and Options				
CC Laboratory				

FCC Laboratory

NON-PUBLIC / FOR INTERNAL USE ONLY

HF Issues and Options

1a) Ban BPL in HF on overhead MV lines (Permit in-house and underground access BPL in HF)

- Protects HF land mobile
 - NTIA did not request protection of federal HF nationwide networks, but...
- Eliminates skywave risk
- Eliminates interference between HF in-house BPL and access BPL

2a) Impose 5 dB height correction & 20 log R extrapolation (6-dB hit)

- Postpones skywave problem
- Reduces interference to fixed stations

3a) No change

Note: w/options 2a or 3a, NTIA sees need for a follow-on NPRM to possibly limit deployment densities or impose other restrictions

FCC Lab/TRB/S. Martin

NON-PUBLIC / FOR INTERNAL USE ONLY

9/8/2004 - Slide 19

ORIGINAL UNREDACTED

Main.net

Conclusions Regarding Main.Net

Compliance

- Overhead device (Repeater on medium voltage lines)
 - Measured emissions exceeded the Part 15 limit
 - Maximum observed radiated emission was 3 dB over the limit
 - Tested unit was said to be set to power level 5. Submitted test report was based on power level 4
 - If distance scaling were based on distance to the pole ground wire rather than the nearest part of the BPL system (a suggestion made by Main.Net's CTO, but which we consider to be invalid), measurements would have passed with 1 dB margin at the selected quasi-peak measurement location

Ground-based device (Repeater on medium voltage lines)

- Measurements were within limits
 - Maximum observed radiated emission was 13 dB below the Part 15 limit when measured in the street
 - Maximum observed radiated emission was 3 dB below the Part 15 limit when measured over the buried power cable

Caveats

- Measurements were not intended to ensure compliance
 - Testing was limited to intended operating bands of devices. Compliance was not tested over the full range of frequencies required by rules.
 - · Testing was not performed on 3 installations or over a full set of radials
 - No conducted testing was performed

ORIGINAL UNREDACTED